
AutoShield: Real-Time Pedestrian-Intent Prediction
with Safety-Filtered Autonomous Driving

Het Patel, Sunny Deshpande, Keisuke Ogawa, Ansh Bhansali
M.S. Autonomy and Robotics

University of Illinois Urbana-Champaign
Urbana, IL, USA

Abstract—Reactive pedestrian handling in autonomous driving
often relies on proximity thresholds and late braking, which
is brittle under uncertainty, latency, and partial observability.
This report presents AutoShield, a modular ROS 2 autonomy
stack deployed on the UIUC GEM platform that adapts vehicle
behavior using pedestrian motion cues and time-to-collision
(TTC) risk estimation. The stack combines LiDAR- and RGB-
D-based pedestrian perception, weighted sensor fusion with
time synchronization and data association, trajectory buffering
and smoothing, pedestrian and ego-motion prediction, TTC
estimation, and a high-level decision state machine that gates
a safety controller and low-level controllers. Lateral control
is implemented using a Stanley controller, while longitudinal
control uses speed mapping, PID velocity control, and a hard-
brake override path for emergency conditions. The resulting
system cleanly separates perception, prediction, planning, and
control, enabling earlier risk-aware speed adaptation compared
to distance-only triggers and improving robustness to sensor
disagreements and intermittent detections.

Index Terms—Autonomous Driving, Pedestrian Prediction,
Sensor Fusion, Time-to-Collision, Safety Controller, ROS 2,
Stanley Controller, Drive-by-Wire.

I. INTRODUCTION

Pedestrian interaction is a core failure mode for autonomy
stacks that treat humans as static obstacles until they enter a
collision corridor. In real deployments, pedestrian behavior is
uncertain and often intention-driven: people hesitate, reverse
direction, step into the roadway late, or remain near crosswalks
and signs. These dynamics, combined with sensor latency
and detection intermittency, make purely reactive braking
policies brittle. This project addresses a practical version of
this problem on a real vehicle platform: adapt vehicle control
online using behavior cues and TTC risk, rather than
distance thresholds alone.

A. Contributions

AutoShield contributes:
• A deployable, modular autonomy stack with explicit

interfaces between perception → fusion → prediction
→ decision → control.

• A LiDAR pedestrian pipeline with preprocessing, DB-
SCAN clustering, centroid tracking with EMA smooth-
ing, and human filtering.

• An RGB-D pipeline using object detection + depth ex-
traction + pixel-to-ego transform to estimate pedestrian
position (distance, bearing) and regulatory sign presence.

• Weighted fusion with approximate time synchronization
(slop) and Euclidean data association.

• A pedestrian behavior predictor producing
/pedestrian_motion and /pedestrian_ttc,
enabling a TTC-driven high-level decision state machine.

• A safety-aware control layer: Stanley lateral control, PID
longitudinal control, and hard-brake override when risk
is critical.

II. SYSTEM OVERVIEW

AutoShield is implemented as ROS 2 nodes connected by
typed topics. Fig. 1 summarizes the functional pipeline.

Fig. 1: AutoShield autonomy stack approach (Perception →
Fusion → Prediction → High-Level Decision → Safety Con-
troller → Controller).

A. Core ROS Topics

The stack uses simple, inspectable messages for modularity.
Table I lists the primary interfaces used throughout the system.

TABLE I: Primary ROS 2 Interfaces

Topic Type / Payload

/lidar_pedestrian_position Int32MultiArray [d, θ]
/rgbd_pedestrian_position Int32MultiArray [d, θ]
/pedestrian_sign_present Bool
/fusion_pedestrian_position fused [d, θ] (same schema)
/pedestrian_motion Twist (predicted pedestrian motion)
/pedestrian_ttc Float64 (risk estimate)



III. VEHICLE PLATFORM AND DEPLOYMENT
CONSTRAINTS

A. UIUC GEM Hardware Stack

Experiments were conducted on the UIUC GEM vehicle
equipped with complementary perception sensors, GNSS/INS
localization, and drive-by-wire actuation:

• Top LiDAR: Ouster OS1-128 (Ethernet @ 1 Gbps), 128
channels, 360◦ horizontal FoV, 45◦ vertical FoV, 10–
20 Hz rotation, max range ∼200 m.

• Front LiDAR: Livox HAP (Ethernet @ 100 Mbps),
120◦ × 25◦ FoV, ∼452k points/s.

• Front Stereo RGB-D: OAK-D LR (USB 3.1 @ 5 Gbps),
global shutter, 1280×800 @ 23 FPS.

• Corner Cameras: Lucid cameras (PoE Ethernet @
1 Gbps), 1920×1200 @ 48.3 FPS.

• GNSS/INS: Septentrio AsteRx SBi3 Pro+ (USB 2.0;
includes RTK via internet access).

• Radar: Smartmicro 152 4D radar (Automotive Ethernet
@ 100 Mbps), provides relative speed measurements.

• Drive-by-wire: PACMod2 via USB-to-CAN bridge
(steering, throttle, brake commands).

Fig. 2: GEM vehicle platform sensor and compute stack.

B. Bring-up and Safety Interlocks

The platform includes a Power Distribution System (PDS)
controlling compute and sensor power (not the vehicle it-
self). A deployment constraint is that LiDAR is intentionally
powered off by default during startup: the LiDAR cable
and one GNSS antenna cable are routed together, and to
avoid cross-talk the workflow waits for GNSS satellite lock
before enabling LiDAR power. Additionally, physical safety
interlocks (emergency button and a brake-pedal click button)
sever the computer-to-PACMod connection. These interlocks
prevent autonomous actuation commands from reaching the
vehicle but do not automatically brake the vehicle; a safety
driver maintains final stopping authority using the brake pedal.

IV. METHODOLOGY

This section describes each module in the autonomy stack:
LiDAR perception, RGB-D perception, sensor fusion, pedes-
trian behavior prediction, high-level decision logic, and con-
trol.

A. Perception: LiDAR Pedestrian Pipeline

The LiDAR pipeline converts PointCloud2 into a stable
pedestrian estimate in the ego frame. The processing stages
are:

• Preprocessing: voxelization, ground filtering, and outlier
removal.

• Clustering: DBSCAN to group points into object clusters
and separate static/dynamic objects.

• Tracking: nearest-centroid matching; centroid smoothing
using an exponential moving average (EMA).

• Human Detection: geometric filtering, motion filtering,
and distance-based sorting to select the most relevant
pedestrian candidate.

Fig. 3: LiDAR perception pipeline: preprocessing→ clustering
→ tracking → human filtering.

Algorithm 1 LiDAR Pedestrian Detection and Tracking

1: Input: point cloud Pt (PointCloud2)
2: P ′

t ← voxelize + ground-filter + remove outliers
3: Ct ← DBSCAN(P ′

t )
4: Ht ← apply human filters to candidate clusters
5: ct ← nearest-centroid match from Ht to previous track
6: c̄t ← αct + (1− α)c̄t−1 {EMA smoothing}
7: Convert c̄t to (dt, θt) in ego frame
8: Publish /lidar_pedestrian_position as
Int32MultiArray [dt, θt]

B. Perception: RGB-D Pedestrian Estimation

The RGB-D module estimates pedestrian position using
object detection and depth:

• Detection: YOLOv11 detects pedestrian bounding boxes
in RGB.

• Depth Extraction: map the bounding box to depth to
estimate the closest pedestrian depth.

• Pose Transform: convert pixel location + depth into
an ego-frame position estimate (Euclidean distance and
bearing).

The module also produces a regulatory sign detection signal
used downstream by the high-level decision logic.

C. Sensor Fusion

Sensor fusion combines LiDAR and RGB-D pedestrian
estimates into a single, robust fused estimate. Fusion includes:



Fig. 4: RGB-D pipeline: object detection → depth extraction
→ pixel-to-ego transform; also provides sign presence.

1) Approximate time sync: slop ≈ 0.1s between LiDAR
and RGB-D messages.

2) Data association: Euclidean match threshold ≈ 2.0m to
associate estimates.

3) Weighted fusion: compute a weighted average for dis-
tance and bearing.

The fusion weights used in the system are summarized in
Table II.

TABLE II: Fusion Weight Parameters

Quantity LiDAR Weight Camera Weight

Distance 0.8 0.2
Direction 0.3 0.7

Fig. 5: Fusion logic: input streams→ time sync→ association
→ weighted fusion; outputs fused position and standalone
unmatched detections.

Algorithm 2 Weighted Pedestrian Fusion with Association

1: Input: LiDAR estimate (dL, θL), RGB-D estimate
(dC , θC)

2: Time-align using approximate sync (slop δt ≤ 0.1s)
3: if ∥pL − pC∥ ≤ 2.0m then
4: dF ← 0.8dL + 0.2dC
5: θF ← 0.3θL + 0.7θC
6: Publish fused (dF , θF ) on

/fusion_pedestrian_position
7: else
8: Publish standalone unmatched detection(s) for monitor-

ing
9: end if

D. Pedestrian Behavior Prediction and TTC
The behavior predictor consumes fused pedestrian obser-

vations and outputs motion and TTC signals for downstream
decision-making. The module includes:

• Pose Transform: represent pedestrian pose consistently
in ego frame.

• Trajectory Buffer: maintain a bounded history of pedes-
trian positions.

• Trajectory Smoothing: smooth trajectory to mitigate
jitter and intermittent detections.

• Motion Prediction: estimate pedestrian velocity and
near-horizon trajectory.

• Ego Motion Prediction: use ego vehicle speed to predict
future vehicle position over the horizon.

• TTC Estimation: forward-simulate the ego vehicle as
a constant-speed point mass along +x, then compute
the earliest predicted time when the pedestrian trajectory
enters a collision radius around the ego rollout (discrete-
time closest approach test).

Fig. 6: Pedestrian behavior predictor module: buffer-
ing/smoothing, motion prediction, ego prediction, TTC com-
putation, and publishing to the high-level command module.

Algorithm 3 Discrete TTC via Forward Simulation

1: Input: predicted pedestrian positions {pped
i }Ni=1 in

base_link, vehicle speed vcar, collision threshold r
2: Assumptions: ego car moves straight along +x with con-

stant speed; car lateral/vertical position is (y, z) = (0, 0)
3: if N = 0 or vcar ≤ 0.01 then
4: TTC← +∞, dmin ← +∞
5: return
6: end if
7: ∆t←

Tpred

N
{Tpred = prediction horizon}

8: TTC← +∞, dmin ← +∞
9: for i = 1 to N do

10: ti ← i∆t
11: pcar

i ← [vcarti, 0, 0]⊤

12: di ← ∥pped
i − pcar

i ∥2
13: dmin ← min(dmin, di)
14: if di < r and TTC = +∞ then
15: TTC← ti {earliest threshold crossing}
16: end if
17: end for
18: Publish /pedestrian_motion (Twist) and

/pedestrian_ttc (Float64)

We model the ego vehicle as a point moving at constant
longitudinal speed along the base_link +x axis over the



prediction horizon, and define TTC as the earliest discrete-
time step when the Euclidean separation between the predicted
pedestrian position and the ego rollout drops below a collision
radius.
E. High-Level Command: Safety State Machine

The high-level command module is a structured state ma-
chine that gates vehicle behavior based on data validity, TTC
risk, sign context, and whether the pedestrian is static or
crossing. The principal states are:

• CRUISE: normal operation on the pre-planned path.
• SLOW CAUTION: reduce speed while monitoring.
• STOP YIELD: immediate halt when critical risk or sign

context demands yielding.
The decision logic includes key checks consistent with the

implementation diagram:
• Data staleness: treat data as stale if no update for > 0.5s.
• Critical TTC: critical region when 0 < TTC < 2.5s.
• Sign context: if a regulatory sign is detected, enforce

stop/yield behavior.
• Closing vector: determine whether the pedestrian is

moving toward the vehicle / path (closing speed).
• Static person: classify static when speed < 0.1 m/s for

context-dependent caution.
• Recovery: a wait buffer (2.0s) before returning to cruise

once the path is clear.

Fig. 7: High-level command state machine for CRUISE /
SLOW CAUTION / STOP YIELD with stale-data, TTC,
sign, and recovery buffering logic.

Algorithm 4 High-Level Decision Logic (Simplified)

1: Inputs: TTC, sign present, data age, closing speed,
ped speed, path clear

2: if data age > 0.5s then
3: state ← STOP YIELD {fail-safe on stale risk data}
4: else if 0 < TTC < 2.5s then
5: state ← STOP YIELD
6: else if sign present then
7: state ← STOP YIELD
8: else if not path clear then
9: if ped speed < 0.1 m/s then

10: state ← SLOW CAUTION
11: else
12: state ← STOP YIELD {dynamic crossing}
13: end if
14: else
15: state ← CRUISE (after 2.0s wait buffer)
16: end if
17: Output: safety state to controller

F. Control: Lateral (Steering) and Longitudinal (Speed)

The controller consumes the safety state and sen-
sor/estimation signals (GNSS, INS heading, vehicle speed).
It is split into:

• Lateral control: Stanley controller minimizes heading
and cross-track error to track a pre-planned path.

• Longitudinal control: speed mapping chooses target
speed based on safety state; a PID velocity controller
outputs throttle/brake; an emergency hard-brake override
triggers under STOP YIELD danger conditions.

The speed mapping used in the design is:

vtarget =


5.0 m/s, CRUISE
2.5 m/s, SLOW CAUTION
0, STOP YIELD

The hard-brake override applies an emergency braking
command (panic stop) with magnitude ≈ 0.6 when the safety
state indicates danger.

Fig. 8: Controller module: Stanley steering, velocity PID for
pedals, and emergency hard-brake override, integrated via
PACMod2 drive-by-wire.

V. EXPERIMENTS AND EVALUATION PLAN

This project emphasizes robust real-time integration on
a real vehicle platform. Recommended metrics (and those
naturally supported by the architecture) include:

• Perception stability: centroid jitter (LiDAR), detection
intermittency (RGB-D), ID switches.

• Fusion consistency: association success rate; disagree-
ment rates; fused estimate variance.

• Prediction quality: TTC smoothness and responsiveness;
false critical TTC triggers.

• Control response: time to slow/stop, minimum TTC
achieved, braking aggressiveness events.

A. Operational Safety Notes

All tests assume supervised operation with a safety driver.
Physical interlocks that sever PACMod control are treated as
safety boundaries, and STOP YIELD is implemented as a
control gating state rather than an assumption of automatic
braking by the vehicle.



VI. RESULTS (QUALITATIVE)

AutoShield achieves a clean functional separation between
perception, prediction, decision-making, and control, enabling
interpretable debugging and safer operation. In scenarios
where pedestrian detections appear intermittently or disagree
across modalities, the fusion module stabilizes the estimate
and the behavior predictor produces a smoother TTC signal.
The high-level state machine enables conservative transitions
to STOP YIELD under critical TTC or sign contexts, while
SLOW CAUTION supports controlled speed reduction when
the context is ambiguous.

Fig. 9: Before: Pedestrian Detected

Fig. 10: After: Speed Adaptation / Stop-Yield

VII. LIMITATIONS

Key limitations observed/anticipated from the design:
• Heuristic thresholds: TTC critical range and state tran-

sitions require tuning across environments, pedestrian
speeds, and sensor latencies.

• Partial observability: occlusions and limited depth re-
turns can temporarily destabilize pedestrian estimates; the
system mitigates but does not eliminate this.

• Intent ambiguity: a pedestrian near the path is not al-
ways a crossing intent; richer intent models could reduce
false slowdowns/stops.

• Actuation boundary: emergency interlocks sever auton-
omy control but do not apply brakes; the design must
assume a safety driver for hard safety guarantees.

VIII. CONCLUSION AND FUTURE WORK

This report presented AutoShield, a real-vehicle ROS 2
autonomy stack that adapts control based on pedestrian behav-
ior rather than distance-only triggers. The approach integrates
multi-modal perception (LiDAR + RGB-D), weighted fusion

with time sync and association, behavior prediction with TTC
estimation, a structured high-level safety state machine, and
safety-aware control using Stanley steering and PID speed
control with emergency braking override.

Future work directions include:
• Replace short-horizon kinematic prediction with multi-

modal learned intent/trajectory predictors.
• Extend to multi-pedestrian tracking and interaction-aware

planning.
• Add formal safety filters (e.g., control barrier functions)

to enforce provable constraints under modeling uncer-
tainty.

• Improve calibration and synchronization to reduce asso-
ciation errors and TTC noise.

ACKNOWLEDGMENT

Thanks to the ECE 484 course staff and the UIUC GEM
platform maintainers for providing the vehicle infrastructure,
ROS drivers, and safety procedures that enabled on-platform
experimentation.

APPENDIX

A. Fusion Parameters

• Approximate time sync slop: 0.1s
• Association threshold: 2.0m
• Weights: distance (LiDAR 0.8, camera 0.2), direction

(LiDAR 0.3, camera 0.7)

B. Decision Parameters

• Data stale timeout: 0.5s
• TTC critical range: 0 < TTC < 2.5s
• Static person speed threshold: 0.1 m/s
• Recovery wait buffer: 2.0s

C. Control Parameters

• Speed mapping: CRUISE = 5.0 m/s, SLOW CAUTION
= 2.5 m/s, STOP YIELD = 0 m/s

• Emergency hard brake magnitude: 0.6
• Lateral controller: Stanley controller (heading + cross-

track minimization)

REFERENCES

[1] Open Source Robotics Foundation, “ROS 2 Documentation,” https://
docs.ros.org/.

[2] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with
Noise,” in Proc. KDD, 1996.

[3] S. Thrun et al., “Stanley: The Robot that Won the DARPA Grand
Challenge,” Journal of Field Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[4] J. Redmon et al., “You Only Look Once: Unified, Real-Time Object
Detection,” in Proc. CVPR, 2016.

[5] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice, OTexts, 2018 (EMA background).


